Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Sci Total Environ ; 918: 170552, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309332

RESUMO

Anthropogenic noise has significantly increased due to human activities, posing a threat to the health and survival of marine organisms. However, current studies have often emphasized its effects on the physiological aspects of marine organisms, while ignored the relationship between the neuroendocrine system and behavior. This study aimed to evaluate the righting behavior and relevant physiological functions of the central nervous system (CNS) in sea slug (Onchidium reevesii) exposed to low-frequency noise and subsequent noise removal. The duration of the sea slugs' righting reflex increased with longer noise exposure time. The degree of neuronal cell damage and apoptosis were significantly increased and relevant gene expressions were affected (Glu, AChE, FMRFamide and CaMKII) (P < 0.05). After the removal of noise, the righting reflex speed gradually recovered, and the degree of neuronal cell damage, apoptosis and the expression levels of genes continued to decrease. Pearson correlation analysis showed that the righting time was positively correlated with CNS tissue and DNA damage, apoptosis rate, and negatively correlated with the expression levels of genes. Therefore, low-frequency noise exposure causes damage to the CNS of sea slugs, subsequently impairing their normal behavior. Sea slugs exhibited partial recovery within 384 h after removing noise. These findings provide valuable insights into the effects of low-frequency noise on the CNS and behavior of marine invertebrates.


Assuntos
Gastrópodes , Animais , Humanos , Reflexo de Endireitamento/fisiologia , Gastrópodes/metabolismo , Ruído/efeitos adversos , Sistema Nervoso Central , Organismos Aquáticos
2.
J Am Assoc Lab Anim Sci ; 62(6): 553-558, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37770194

RESUMO

Exposure to CO2 gas is a common rodent euthanasia method. CO2 activates nociceptors in rats and is painful to humans at concentrations equal to or greater than 32.5% The concentration of CO2 at which rodents become unconsciousness is inadequately defined. We used loss of righting reflex (LORR) to identify the concentration at which CO2 caused loss of consciousness in C57Bl/6, CD1 and 129P3J mice (16 females and 16 males per strain). We used a custom built, rotating, motorized cylinder to determine LORR as CO2 concentrations were increased. Two LORR assessment methods were used: 1) a 1-Paw assessment in which the righting reflex was considered to be present if one or more paws contacted the cylinder after rotation into dorsal recumbency and 2) a 4-Paw assessment in which the righting reflex was considered to be present only if all 4 paws contacted the cylinder. LORR test data were analyzed with Probit regression and dose response curves were plotted. 1-Paw EC95 values (CO2 concentration at which LORR occurred for 95% of the population) were: C57Bl/6; 30.7%, CD1; 26.2%, 129P3J; 20.1%. The EC95 for C57Bl/6 was significantly higher than that of the 129P3J mice, with no significant differences between other strains. Four-Paw EC95 values were: C57Bl/6; 22.8%, CD1; 25.3%, 129P3J; 20.1%. Values for 129P3J mice were significantly lower than those of CD1 mice), with no significant difference between other strains. The EC95 varied significantly between 1-Paw and 4-Paw methods only for C57Bl/6 mice. These results suggest a potential for nociception and pain to occur in some individuals of some mouse strains during CO2 euthanasia.


Assuntos
Dióxido de Carbono , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/veterinária , Reflexo , Reflexo de Endireitamento/fisiologia , Inconsciência
3.
Artigo em Inglês | MEDLINE | ID: mdl-34664104

RESUMO

Many animals, including insects, need to solve the problem of self-righting if inverted and substrate is one understudied factor that could affect righting ability. In this study we ask the questions, how does Halyomorpha halys self-right and does variation in substrate affect self-righting? To address our questions we used four substrates with different features and filmed H. halys righting response on each substrate (n = 22 individuals). We also used two synced cameras to film the most common righting method and quantified its kinematics. Self-righting metrics did vary depending on substrate in terms of diversity of righting methods used, duration of the successful righting event, number of fails per attempt, and stance width. We also determined that the symmetrical forward flip is the most common method used by H. halys. In the forward flip H. halys creates a tripod of support using the hindlegs and the tip of the abdomen to elevate the anterior portion of the body off the substrate and pitch forward onto its feet. In addition to demonstrating that substrate can impact self-righting and quantifying the symmetrical forward flip, we also provide a foundation for future explorations of sensory feedback and adaptive motor control using H. halys.


Assuntos
Fenômenos Biomecânicos/fisiologia , Reflexo de Endireitamento/fisiologia , Percepção do Tato/fisiologia , Animais , Heterópteros , Propriedades de Superfície
4.
J Pharmacol Exp Ther ; 379(3): 324-330, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34521699

RESUMO

Etomidate is a potent and rapidly acting anesthetic with high therapeutic index (TI) and superior hemodynamic stability. However, side effect of suppressing adrenocortical function limits its clinical use. To overcome this side effect, we designed a novel etomidate analog, EL-0052, aiming to retain beneficial properties of etomidate and avoid its disadvantage of suppressing adrenocortical steroid synthesis. Results exhibited that EL-0052 enhanced GABAA receptors currents with a concentration for EC50 of 0.98 ± 0.02 µM, which was about three times more potent than etomidate (3.07 ± 1.67 µM). Similar to hypnotic potency of etomidate, EL-0052 exhibited loss of righting reflex with ED50s of 1.02 (0.93-1.20) mg/kg in rats and 0.5 (0.45-0.56) mg/kg in dogs. The TI of EL-0052 in rats was 28, which was higher than 22 of etomidate. There was no significant difference in hypnotic onset time, recovery time, and walking time between EL-0052 and etomidate in rats. Both of them had minor effects on mean arterial pressure in dogs. EL-0052 had no significant effect on adrenocortical function in dogs even at a high dose (4.3 × ED50), whereas etomidate significantly inhibited corticosteroid secretion. The inhibition of cortisol synthesis assay showed that EL-0052 had a weak inhibition on cortisol biosynthesis in human H259 cells with an IC50 of 1050 ± 100 nM, which was 2.09 ± 0.27 nM for etomidate. EL-0052 retains the favorable properties of etomidate, including potent hypnotic effect, rapid onset and recovery, stable hemodynamics, and high therapeutic index without suppression of adrenocortical function. SIGNIFICANCE STATEMENT: The novel etomidate analog EL-0052 retains the favorable properties of etomidate without suppressing adrenocortical function and provides a new strategy to optimize the structure of etomidate.


Assuntos
Córtex Suprarrenal/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Etomidato/análogos & derivados , Etomidato/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Córtex Suprarrenal/metabolismo , Animais , Pressão Sanguínea/fisiologia , Corticosterona/sangue , Cães , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Hemodinâmica/fisiologia , Humanos , Masculino , Ratos , Ratos Wistar , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia
5.
J Neurosci ; 41(40): 8297-8308, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34417328

RESUMO

All what we see, touch, hear, taste, or smell must first be detected by the sensory elements of our nervous system. Sensory neurons, therefore, represent a critical component in all neural circuits and their correct function is essential for the generation of behavior and adaptation to the environment. Here, we report that the evolutionarily-conserved microRNA (miRNA) miR-263b plays a key behavioral role in Drosophila melanogaster through effects on the function of larval sensory neurons. Several independent experiments (in 50:50 male:female populations) support this finding: first, miRNA expression analysis, via reporter expression and fluorescent-activated cell sorting (FACS)-quantitative PCR (qPCR) analysis, demonstrate miR-263b expression in larval sensory neurons. Second, behavioral tests in miR-263b null mutants show defects in self-righting, an innate and evolutionarily conserved posture-control behavior that allows larvae to rectify their position if turned upside-down. Third, competitive inhibition of miR-263b in sensory neurons using a miR-263b "sponge" leads to self-righting defects. Fourth, systematic analysis of sensory neurons in miR-263b mutants shows no detectable morphologic defects in their stereotypic pattern, while genetically-encoded calcium sensors expressed in the sensory domain reveal a reduction in neural activity in miR-263b mutants. Fifth, miR-263b null mutants show reduced "touch-response" behavior and a compromised response to sound, both characteristic of larval sensory deficits. Furthermore, bioinformatic miRNA target analysis, gene expression assays, and behavioral phenocopy experiments suggest that miR-263b might exert its effects, at least in part, through repression of the basic helix-loop-helix (bHLH) transcription factor Atonal Altogether, our study suggests a model in which miRNA-dependent control of transcription factor expression affects sensory function and behavior.SIGNIFICANCE STATEMENT Sensory neurons are key to neural circuit function, but how these neurons acquire their specific properties is not well understood. Here, we examine this problem, focusing on the roles played by microRNAs (miRNAs). Using Drosophila, we demonstrate that the evolutionarily-conserved miRNA miR-263b controls sensory neuron function allowing the animal to perform an adaptive, elaborate three-dimensional movement. Our work thus shows that microRNAs can control complex motor behaviors by modulating sensory neuron physiology, and suggests that similar miRNA-dependent mechanisms may operate in other species. The work contributes to advance the understanding of the molecular basis of behavior and the biological roles of microRNAs within the nervous system.


Assuntos
MicroRNAs/biossíntese , Movimento/fisiologia , Postura/fisiologia , Reflexo de Endireitamento/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Drosophila melanogaster , Feminino , Masculino , MicroRNAs/genética
6.
Neurosci Lett ; 757: 135960, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34048818

RESUMO

In this work we examine the possible neural basis for two brainstem-spinal reflexes using source analyses of brain activity recorded over the cortex and posterior fossa. In a sample of 5 healthy adult subjects, using axial and vestibular stimulation by means of applied impulsive forces, evoked potentials were recorded with 63 channels using a 10 % cerebellar extension montage. In parallel, EMG was recorded from soleus and tibialis anterior muscles and accelerometry from the lower leg. Recordings over the cerebellum (ECeG) confirmed the presence of short latency (SL) potentials and these were associated with changes in high-frequency power. The SL responses to the two stimulus modalities differed in that the axial stimulation produced an initial pause and then a burst in the high-frequency ECeG, followed by excitation/inhibition in soleus while vestibular stimulation produced an initial burst then a pause, followed by inhibition/excitation in soleus. These short latency responses were followed by longer latency N1/P2/N2 responses in the averaged EEG, which were maximal at FCz. Brain Electrical Source Analysis (BESA) demonstrated both cerebellar and cerebral cortical contributions to the short-latency responses and primarily frontal cortex contributions to the long-latency EPs. The latency and polarity of the SL EPs, in conjunction with changes in high-frequency spontaneous activity, are consistent with cerebellar involvement in the control of brainstem-spinal reflexes. The early involvement of frontal cortex and subsequent later activity may be an indicator of the activation of the cortical motor-related system for rapid responses which may follow the reflexive components. These findings provide evidence of the feasibility of non-invasive electrophysiology of the human cerebellum and have demonstrated cerebellar and frontal activations associated with postural-related stimuli.


Assuntos
Tronco Encefálico/fisiologia , Cerebelo/fisiologia , Córtex Motor/fisiologia , Reflexo de Endireitamento/fisiologia , Coluna Vertebral/fisiologia , Adulto , Estimulação Elétrica , Eletroencefalografia , Eletromiografia , Potenciais Evocados/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Músculo Esquelético , Tempo de Reação , Vestíbulo do Labirinto
7.
Exp Neurol ; 343: 113760, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34000248

RESUMO

General anesthetic agents are thought to induce loss-of-consciousness (LOC) and enable pain-free surgery by acting on the endogenous brain circuitry responsible for sleep-wake cycling. In clinical use, the entire CNS is exposed to anesthetic molecules with LOC and amnesia usually attributed to synaptic suppression in the cerebral cortex and immobility and analgesia to agent action in the spinal cord and brainstem. This model of patch-wise suppression has been challenged, however, by the observation that all functional components of anesthesia can be induced by focal delivery of minute quantities of GABAergic agonists to the brainstem mesopontine tegmental anesthesia area (MPTA). We compared spectral features of the cortical electroencephalogram (EEG) in rats during systemic anesthesia and anesthesia induced by MPTA microinjection. Systemic administration of (GABAergic) pentobarbital yielded the sustained, δ-band dominant EEG signature familiar in clinical anesthesia. In contrast, anesthesia induced by MPTA microinjection (pentobarbital or muscimol) featured epochs of δ-band EEG alternating with the wake-like EEG, the pattern typical of natural non-rapid-eye-movement (NREM) and REM sleep. The rats were not sleeping, however, as they remained immobile, atonic and unresponsive to noxious pinch. Recalling the paradoxical wake-like quality the EEG during REM sleep, we refer to this state as "paradoxical anesthesia". GABAergic anesthetics appear to co-opt both cortical and spinal components of the sleep network via dedicated axonal pathways driven by MPTA neurons. Direct drug exposure of cortical and spinal neurons is not necessary, and is probably responsible for off-target side-effects of systemic administration including monotonous δ-band EEG, hypothermia and respiratory depression. SIGNIFICANCE STATEMENT: The concept that GABAergic general anesthetic agents induce loss-of-consciousness by substituting for an endogenous neurotransmitter, thereby co-opting neural circuitry responsible for sleep-wake transitions, has gained considerable traction. However, the electroencephalographic (EEG) signatures of sleep and anesthesia differ fundamentally. We show that when the anesthetic state is generated by focal delivery of GABAergics into the mesopontine tegmental anesthesia area (MPTA) the resulting EEG repeatedly transitions between delta-wave-dominant and wake-like patterns much as in REM-NREM sleep. This suggests that systemic (clinical) anesthetic delivery, which indiscriminately floods the entire cerebrum with powerful inhibitory agents, obscures the sleep-like EEG signature associated with the less adulterated form of anesthesia obtained when the drugs are applied selectively to loci where the effective neurotransmitter substitution actually occurs.


Assuntos
Anestesia/métodos , Tronco Encefálico/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , GABAérgicos/administração & dosagem , Microinjeções/métodos , Fases do Sono/efeitos dos fármacos , Animais , Tronco Encefálico/fisiologia , Eletroencefalografia/métodos , Feminino , Masculino , Ratos , Ratos Wistar , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Fases do Sono/fisiologia
8.
Biochem Pharmacol ; 186: 114477, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609559

RESUMO

Despite major advances, there remains a need for novel anesthetic drugs or drug combinations with improved efficacy and safety profiles. Here, we show that inhibition of cAMP-phosphodiesterase 4 (PDE4), while not inducing anesthesia by itself, potently enhances the anesthetic effects of Isoflurane in mice. Treatment with several distinct PAN-PDE4 inhibitors, including Rolipram, Piclamilast, Roflumilast, and RS25344, significantly delayed the time-to-righting after Isoflurane anesthesia. Conversely, treatment with a PDE3 inhibitor, Cilostamide, or treatment with the potent, but non-brain-penetrant PDE4 inhibitor YM976, had no effect. These findings suggest that potentiation of Isoflurane hypnosis is a class effect of brain-penetrant PDE4 inhibitors, and that they act by synergizing with Isoflurane in inhibiting neuronal activity. The PDE4 family comprises four PDE4 subtypes, PDE4A to PDE4D. Genetic deletion of any of the four PDE4 subtypes in mice did not affect Isoflurane anesthesia per se. However, PDE4D knockout mice are largely protected from the effect of pharmacologic PDE4 inhibition, suggesting that PDE4D is the predominant, but not the sole PDE4 subtype involved in potentiating Isoflurane anesthesia. Pretreatment with Naloxone or Propranolol alleviated the potentiating effect of PDE4 inhibition, implicating opioid- and ß-adrenoceptor signaling in mediating PDE4 inhibitor-induced augmentation of Isoflurane anesthesia. Conversely, stimulation or blockade of α1-adrenergic, α2-adrenergic or serotonergic signaling did not affect the potentiation of Isoflurane hypnosis by PDE4 inhibition. We further show that pretreatment with a PDE4 inhibitor boosts the delivery of bacteria into the lungs of mice after intranasal infection under Isoflurane, thus providing a first example that PDE4 inhibitor-induced potentiation of Isoflurane anesthesia can critically impact animal models and must be considered as a factor in experimental design. Our findings suggest that PDE4/PDE4D inhibition may serve as a tool to delineate the exact molecular mechanisms of Isoflurane anesthesia, which remain poorly understood, and may potentially be exploited to reduce the clinical doses of Isoflurane required to maintain hypnosis.


Assuntos
Anestesia/métodos , Anestésicos Inalatórios/administração & dosagem , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Isoflurano/administração & dosagem , Inibidores da Fosfodiesterase 4/administração & dosagem , Reflexo de Endireitamento/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reflexo de Endireitamento/fisiologia
9.
J Neurotrauma ; 38(8): 967-982, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32394788

RESUMO

Although concussions can result in persistent neurological post-concussion symptoms, they are typically invisible on routine magnetic resonance imaging (MRI) scans. Our study aimed to investigate the use of ultra-high-field diffusion tensor imaging (UHF-DTI) in discerning severity-dependent microstructural changes in the mouse brain following a concussion. Twenty-three C57BL/6 mice were randomly allocated into three groups: the low concussive (LC, n = 9) injury group, the high concussive (HC, n = 6) injury group, and the sham control (SC, n = 7) group. Mice were perfused on day 2 post-injury, and the brains were scanned on a 16.4T MRI scanner with UHF-DTI and neurite orientation dispersion imaging (NODDI). Finite element analysis (FEA) was performed to determine the pattern and extent of the physical impact on the brain tissue. MRI findings were correlated with histopathological analysis in a subset of mice. In the LC group, increased fractional anisotropy (FA) and decreased orientation dispersion index (ODI) but limited neurite density index (NDI) changes were found in the gray matter, and minimal changes to white matter (WM) were observed. The HC group presented increased mean diffusivity (MD), decreased NDI, and decreased ODI in the WM and gray matter (GM); decreased FA was also found in a small area of the WM. WM changes were associated with WM degeneration and neuroinflammation. FEA showed varying region-dependent degrees of stress, in line with the different imaging findings. This study provides evidence that UHF-DTI combined with NODDI can detect concussions of variable intensities. This has significant implications for the diagnosis of concussion in humans.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Análise de Elementos Finitos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reflexo de Endireitamento/fisiologia
10.
Sci Rep ; 10(1): 20280, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219247

RESUMO

The righting reflex (RR) is frequently used to assess level of arousal and applied to animal models of a range of neurological disorders. RR produces a binary result that, when positive, is used to infer restoration of consciousness, often without further behavioral corroboration. We find that RR is an unreliable metric for arousal/recovery of consciousness. Instead, cortical activity and motor behavior that accompany RR are a non-binary, superior criterion that accurately calibrates and establishes level of arousal in rodents.


Assuntos
Nível de Alerta/fisiologia , Técnicas de Observação do Comportamento/métodos , Doenças do Sistema Nervoso/diagnóstico , Reflexo de Endireitamento/fisiologia , Animais , Estado de Consciência/fisiologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Humanos , Masculino , Camundongos , Doenças do Sistema Nervoso/fisiopatologia , Reprodutibilidade dos Testes , Técnicas Estereotáxicas
11.
Pediatr Neurosurg ; 55(5): 244-253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33108787

RESUMO

INTRODUCTION: Hydrocephalus is a disorder in which the circulation of cerebrospinal fluid is altered in a manner that leads to its accumulation in the ventricles and subarachnoid space. Its impact on the neuronal density and networks in the overlying cerebral cortex in a time-dependent neonatal hydrocephalic process is largely unknown. We hypothesize that hydrocephalus will affect the cytoarchitecture of the cerebral cortical mantle of neonatal hydrocephalic mice, which will in turn modify sensorimotor processing and neurobehaviour. OBJECTIVE: The purpose of this study is to probe the effect of hydrocephalus on 3 developmental milestones (surface righting reflex, cliff avoidance reflex, and negative geotaxis) and on cortical neuronal densities in neonatal hydrocephalic mice. METHODS: Hydrocephalus was induced in 1-day-old mice by intracisternal injection of sterile kaolin suspension. The pups were tested for reflex development and sensorimotor ability using surface righting reflex (PND 5, 7, and 9), cliff avoidance (PND 6), and negative geotaxis (PND 10 and 12) prior to their sacrifice on PND 7, 14, and 21. Neuronal density and cortical thickness in the sensorimotor cortex were evaluated using atlas-based segmentation of the neocortex and boundary definition in 4-µm paraffin-embedded histological sections with hematoxylin and eosin as well as cresyl violet stains. RESULTS: Surface righting and cliff avoidance activities were significantly impaired in hydrocephalic pups but no statistically significant difference was observed in negative geotaxis in both experimental and control pups. The neuronal density of the sensorimotor cortex was significantly higher in hydrocephalic mice than in age-matched controls on PND 14 and 21 (373.20 ± 21.54 × 10-6 µm2 vs. 157.70 ± 21.88 × 10-6 µm2; 230.0 ± 44.1 × 10-6 µm2 vs. 129.60 ± 3.72 × 10-6 µm2, respectively; p < 0.05). This was accompanied by reduction in the cortical thickness (µm) in the hydrocephalic mice on PND 7 (2,409 ± 43.37 vs. 3,752 ± 65.74, p < 0.05), PND 14 (2,035 ± 322.10 vs. 4,273 ± 67.26, p < 0.05), and PND 21 (1,676 ± 33.90 vs. 4,945 ± 81.79, p < 0.05) compared to controls. CONCLUSION: In this murine model of neonatal hydrocephalus, the quantitative changes in the cortical neuronal population may play a role in the observed changes in neurobehavioural findings.


Assuntos
Contagem de Células/métodos , Hidrocefalia/patologia , Caulim/toxicidade , Transtornos do Neurodesenvolvimento/patologia , Neurônios/patologia , Córtex Sensório-Motor/patologia , Animais , Animais Recém-Nascidos , Hidrocefalia/induzido quimicamente , Hidrocefalia/psicologia , Camundongos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/psicologia , Neurônios/efeitos dos fármacos , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Córtex Sensório-Motor/efeitos dos fármacos , Córtex Sensório-Motor/crescimento & desenvolvimento
12.
Neuropharmacology ; 178: 108220, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32736086

RESUMO

Phosphodiesterase type 4 (PDE4) inhibitors prevent hydrolysis of cyclic adenosine monophosphate and increase protein kinase A (PKA)-mediated phosphorylation. PDE4 inhibitors also regulate responses to ethanol and GABAergic drugs. We investigated mechanisms by which the PDE4 inhibitor, apremilast, regulates acute effects of ethanol and GABAergic drugs in male and female mice. Apremilast prolonged the sedative-hypnotic effects of gaboxadol, zolpidem, and propofol but did not alter etomidate effects, and unexpectedly shortened the sedative-hypnotic effects of diazepam. Apremilast prolonged rotarod ataxia induced by zolpidem, propofol, and loreclezole, shortened recovery from diazepam, but had no effect on ataxia induced by gaboxadol or etomidate. The PKA inhibitor H-89 blocked apremilast's ability to prolong the sedative-hypnotic effects of ethanol, gaboxadol, and propofol and to prolong ethanol- and propofol-induced ataxia. H-89 also blocked apremilast's ability to shorten the sedative-hypnotic and ataxic effects of diazepam. The ß1-specific antagonist, salicylidene salicylhydrazide (SCS), produced faster recovery from ethanol- and diazepam-induced ataxia, but did not alter propofol- or etomidate-induced ataxia. SCS shortened the sedative-hypnotic effects of ethanol and diazepam but not of propofol. In Xenopus oocytes, a phosphomimetic (aspartate) mutation at the PKA phosphorylation site in ß1 subunits decreased the maximal GABA current in receptors containing α1 or α3, but not α2 subunits. In contrast, phosphomimetic mutations at PKA sites in ß3 subunits increased the maximal GABA current in receptors containing α1 or α2, but not α3 subunits. The GABA potency and allosteric modulation by ethanol, propofol, etomidate, zolpidem, flunitrazepam, or diazepam were not altered by these mutations. We propose a model whereby apremilast increases PKA-mediated phosphorylation of ß1-and ß3-containing GABAA receptors and selectively alters acute tolerance to ethanol and GABAergic drugs.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Etanol/administração & dosagem , Moduladores GABAérgicos/administração & dosagem , Reflexo de Endireitamento/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Talidomida/análogos & derivados , Animais , Relação Dose-Resposta a Droga , Feminino , Agonistas GABAérgicos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Fosfodiesterase 4/administração & dosagem , Receptores de GABA-A/fisiologia , Reflexo de Endireitamento/fisiologia , Transdução de Sinais/fisiologia , Talidomida/administração & dosagem , Xenopus laevis
13.
Otolaryngol Head Neck Surg ; 163(4): 799-805, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32513047

RESUMO

OBJECTIVE: To quantitatively analyze corrective saccade (CS) gain and further characterize the specific relationship between vestibulo-ocular reflex (VOR) gain and CS gain in patients with vestibular loss and healthy controls. STUDY DESIGN: Prospective combined with retrospective study. SETTING: Affiliated Sixth People's Hospital, Shanghai Jiao Tong University. SUBJECTS AND METHODS: Forty patients with unilateral vestibular loss and 40 participants with normal vestibular function were subjected to video head impulse testing (vHIT). The analysis of the horizontal semicircular canal VOR and CS gains was based on individual head impulses. RESULTS: The patient group had significantly higher CS gain and lower VOR gain than the control group (P < .001). While there was no significant correlation between VOR and CS gains in the control group after adjusting for age and sex (P = .689), VOR gain negatively correlated with CS gain in the patient group (r = -0.853, P < .001). The specific relationship between VOR and CS gains was characterized as y = -1.17x + 1.12 (x: VOR gain, y: CS gain; r2 = 0.732, P < .001) in the patient group. CONCLUSIONS: In healthy participants, CS was not correlated with VOR gain, suggesting that CS is not due to VOR hypofunction. In patients with unilateral vestibular loss, CS was closely associated with VOR gain and can almost correct gaze position errors required for visual stabilization. CS gain could be an important indicator to diagnose vestibular loss and help physicians identify abnormal vHIT curves caused by artifacts and irregular practices.


Assuntos
Teste do Impulso da Cabeça , Doenças do Labirinto/fisiopatologia , Reflexo de Endireitamento/fisiologia , Movimentos Sacádicos/fisiologia , Doenças do Nervo Vestibulococlear/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Surdez/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
14.
Exp Brain Res ; 238(5): 1237-1248, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32279086

RESUMO

In normal humans, tapping the forehead produces a neck muscle reflex that is used clinically to test vestibular function, the cervical vestibular evoked myogenic potential (cVEMP). As stretch receptors can also be activated by skull taps, we investigated the origin of the early and late peaks of the bone-conducted cVEMP. In twelve normal participants, we differentially stimulated the vestibular and neck stretch receptors by applying vibration to the forehead (activating both vestibular and stretch receptors) and to the sternum (activating mainly stretch receptors). Patients with bilateral vestibulopathy (BVP; n = 26) and unilateral vestibular loss (uVL; n = 17) were also investigated for comparison. Comparison of peaks in normal subjects suggested that the early peaks were vestibular-dependent, while the later peaks had mixed vestibular and stretch input. The late peaks were present but small (1.1 amplitude ratio) in patients with BVP and absent VEMPs, confirming that they do not strictly depend on vestibular function, and largest in age-matched controls (1.5 amplitude ratio, p = 0.049), suggesting that there is an additional vestibular reflex at this latency (approx. 30 ms). Patients with uVL had larger late peaks on the affected than the normal side (1.4 vs 1.0 amplitude ratio, p = 0.034). The results suggest that the early responses in SCM to skull vibration in humans are vestibular-dependent, while there is a late stretch reflex bilaterally and a late vestibular reflex in the contralateral muscle.


Assuntos
Condução Óssea/fisiologia , Reflexo de Endireitamento/fisiologia , Reflexo de Estiramento/fisiologia , Doenças Vestibulares/fisiopatologia , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculos do Pescoço , Crânio , Vibração , Adulto Jovem
15.
Proc Biol Sci ; 286(1907): 20191424, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31337309

RESUMO

The effects of anthropogenic aquatic noise on marine invertebrates are poorly understood. We investigated the impact of seismic surveys on the righting reflex and statocyst morphology of the palinurid rock lobster, Jasus edwardsii, using field-based exposure to air gun signals. Following exposure equivalent to a full-scale commercial assay passing within 100-500 m, lobsters showed impaired righting and significant damage to the sensory hairs of the statocyst. Reflex impairment and statocyst damage persisted over the course of the experiments-up to 365 days post-exposure and did not improved following moulting. These results indicate that exposure to air gun signals caused morphological damage to the statocyst of rock lobsters, which can in turn impair complex reflexes. This damage and impairment adds further evidence that anthropogenic aquatic noise has the potential to harm invertebrates, necessitating a better understanding of possible ecological and economic impacts.


Assuntos
Ruído/efeitos adversos , Palinuridae/fisiologia , Acústica , Animais , Feminino , Armas de Fogo , Palinuridae/efeitos da radiação , Reflexo de Endireitamento/fisiologia , Reflexo de Endireitamento/efeitos da radiação , Órgãos dos Sentidos/fisiologia , Órgãos dos Sentidos/efeitos da radiação
16.
Neurobiol Dis ; 120: 151-164, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30201311

RESUMO

Cerebral lesions acquired in the perinatal period can induce cerebral palsy (CP), a multifactorial pathology leading to lifelong motor and cognitive deficits. Several risk factors, including perinatal hypoxia-ischemia (HI), can contribute to the emergence of CP in preterm infants. Currently, there is no international consensus on treatment strategies to reduce the risk of developing CP. A meta-analysis showed that magnesium sulfate (MgSO4) administration to mothers at risk of preterm delivery reduces the risk of developing CP (Crowther et al., 2017). However, only a few studies have investigated the long-term effects of MgSO4 and it is not known whether sex would influence MgSO4 efficacy. In addition, the search for potential deleterious effects is essential to enable broad use of MgSO4 in maternity wards. We used a mouse model of perinatal HI to study MgSO4 effects until adolescence, focusing on cognitive and motor functions, and on some apoptosis and inflammation markers. Perinatal HI at postnatal day 5 (P(5)) induced (1) sensorimotor deficits in pups; (2) increase in caspase-3 activity 24 h after injury; (3) production of proinflammatory cytokines from 6 h to 5 days after injury; (4) behavioral and histological alterations in adolescent mice with considerable interindividual variability. MgSO4 prevented sensorimotor alterations in pups, with the same efficacy in males and females. MgSO4 displayed anti-apoptotic and anti-inflammatory effects without deleterious side effects. Perinatal HI led to motor coordination impairments in female adolescent mice and cognitive deficits in both sexes. MgSO4 tended to prevent these motor and cognitive deficits only in females, while it prevented global brain tissue damage in both sexes. Moreover, interindividual and intersexual differences appeared regarding the lesion size and neuroprotection by MgSO4 in a region-specific manner. These differences, the partial prevention of disorders, as well as the mismatch between histological and behavioral observations mimic clinical observations. This underlines that this perinatal HI model is suitable to further analyze the mechanisms of sex-dependent perinatal lesion susceptibility and MgSO4 efficacy.


Assuntos
Lesões Encefálicas/prevenção & controle , Paralisia Cerebral/prevenção & controle , Modelos Animais de Doenças , Sulfato de Magnésio/uso terapêutico , Reflexo de Endireitamento/efeitos dos fármacos , Caracteres Sexuais , Animais , Animais Recém-Nascidos , Anticonvulsivantes/uso terapêutico , Lesões Encefálicas/patologia , Lesões Encefálicas/psicologia , Paralisia Cerebral/patologia , Paralisia Cerebral/psicologia , Feminino , Sulfato de Magnésio/farmacologia , Masculino , Camundongos , Reflexo de Endireitamento/fisiologia , Fatores Sexuais , Fatores de Tempo , Resultado do Tratamento
17.
Int J Dev Neurosci ; 71: 156-162, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30223009

RESUMO

BACKGROUND: Polyunsaturated fatty acids (PUFAs) are normal components of growth and development and its derivatives especially n-3 PUFAs have an influence on the development and maturation of nervous system. The purpose of our present study was to investigate the effect of maternal n-3 PUFAs dietary on physical maturation and the neurobiological development of the rat offspring. METHODS: According to the content of n-3 PUFAs in their diets, female dams were randomly divided into three treatment groups (n = 6-7): deficiency, control and supplementation. The physical parameters and neurobehavioral tests were measured in the rats' offspring. RESULTS: There were no significant differences in litter size and sex ratio between three groups. However, the ratio of brain/body weight was higher in the deficiency pups than the control. As to the body weight, the deficiency pups were heavier than the control pups on postnatal day (PND) 1, PND7, PND14, and PND21, while supplementation pups were lower than the control pups on PND1. There are no significant differences in the physical parameters of incisor eruption and fur appearance between three groups. However, deficiency pups had earlier eye opening than the control pups. Unfortunately, there were no significant differences in surface righting reflex, cliff avoidance, forelimb grip and air righting reflex. Whereas, supplementation pups required less time to complete negative geotaxis than the control pups on PND17. CONCLUSION: This study suggests that the consumption of adequate n-3 PUFAs is benefit for the optimal growth and development of rat offspring. The n-3 PUFAs supplementation is beneficial to population that did not have sufficient provision of n-3 PUFAs in the diet during gestation and lactation.


Assuntos
Ácidos Graxos Insaturados/administração & dosagem , Transtornos do Neurodesenvolvimento/fisiopatologia , Condicionamento Físico Animal/fisiologia , Resultado da Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fatores Etários , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva , Feminino , Força Muscular , Tamanho do Órgão/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Reflexo de Endireitamento/fisiologia , Estatísticas não Paramétricas
18.
Br J Anaesth ; 121(3): 605-615, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30115259

RESUMO

BACKGROUND: Current concepts suggest that impaired representation of information in cortical networks contributes to loss of consciousness under anaesthesia. We tested this idea in rat auditory cortex using information theory analysis of multiunit responses recorded under three anaesthetic agents with different molecular targets: isoflurane, propofol, and dexmedetomidine. We reasoned that if changes in the representation of sensory stimuli are causal for loss of consciousness, they should occur regardless of the specific anaesthetic agent. METHODS: Spiking responses were recorded with chronically implanted microwire arrays in response to acoustic stimuli incorporating varied temporal and spectral dynamics. Experiments consisted of four drug conditions: awake (pre-drug), sedation (i.e. intact righting reflex), loss of consciousness (a dose just sufficient to cause loss of righting reflex), and recovery. Measures of firing rate, spike timing, and mutual information were analysed as a function of drug condition. RESULTS: All three drugs decreased spontaneous and evoked spiking activity and modulated spike timing. However, changes in mutual information were inconsistent with altered stimulus representation being causal for loss of consciousness. First, direction of change in mutual information was agent-specific, increasing under dexmedetomidine and decreasing under isoflurane and propofol. Second, mutual information did not decrease at the transition between sedation and LOC for any agent. Changes in mutual information under anaesthesia correlated strongly with changes in precision and reliability of spike timing, consistent with the importance of temporal stimulus features in driving auditory cortical activity. CONCLUSIONS: The primary sensory cortex is not the locus for changes in representation of information causal for loss of consciousness under anaesthesia.


Assuntos
Anestesia Geral/métodos , Anestésicos Gerais/farmacologia , Córtex Auditivo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Estimulação Acústica/métodos , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Animais , Córtex Auditivo/fisiologia , Estado de Consciência/fisiologia , Dexmedetomidina/farmacologia , Eletroencefalografia/efeitos dos fármacos , Feminino , Hipnóticos e Sedativos/farmacologia , Isoflurano/farmacologia , Propofol/farmacologia , Ratos Endogâmicos ACI , Tempo de Reação/efeitos dos fármacos , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia
19.
Anesthesiology ; 129(3): 459-476, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29894316

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Many general anesthetics were discovered empirically, but primary screens to find new sedative-hypnotics in drug libraries have not used animals, limiting the types of drugs discovered. The authors hypothesized that a sedative-hypnotic screening approach using zebrafish larvae responses to sensory stimuli would perform comparably to standard assays, and efficiently identify new active compounds. METHODS: The authors developed a binary outcome photomotor response assay for zebrafish larvae using a computerized system that tracked individual motions of up to 96 animals simultaneously. The assay was validated against tadpole loss of righting reflexes, using sedative-hypnotics of widely varying potencies that affect various molecular targets. A total of 374 representative compounds from a larger library were screened in zebrafish larvae for hypnotic activity at 10 µM. Molecular mechanisms of hits were explored in anesthetic-sensitive ion channels using electrophysiology, or in zebrafish using a specific reversal agent. RESULTS: Zebrafish larvae assays required far less drug, time, and effort than tadpoles. In validation experiments, zebrafish and tadpole screening for hypnotic activity agreed 100% (n = 11; P = 0.002), and potencies were very similar (Pearson correlation, r > 0.999). Two reversible and potent sedative-hypnotics were discovered in the library subset. CMLD003237 (EC50, ~11 µM) weakly modulated γ-aminobutyric acid type A receptors and inhibited neuronal nicotinic receptors. CMLD006025 (EC50, ~13 µM) inhibited both N-methyl-D-aspartate and neuronal nicotinic receptors. CONCLUSIONS: Photomotor response assays in zebrafish larvae are a mechanism-independent platform for high-throughput screening to identify novel sedative-hypnotics. The variety of chemotypes producing hypnosis is likely much larger than currently known.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Hipnóticos e Sedativos/farmacologia , Larva/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Reflexo de Endireitamento/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Larva/fisiologia , Locomoção/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Reflexo de Endireitamento/fisiologia , Xenopus , Peixe-Zebra
20.
J Neuropathol Exp Neurol ; 77(9): 782-792, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939351

RESUMO

Mild traumatic brain injury (mTBI) has been linked to enduring neurological damage following repetitive injury. Previously, we reported that intensity-specific, repetitive mTBI exacerbated microvascular and axonal damage in brainstem. For a more rigorous and global assessment, we assessed the burden of neocortical diffuse axonal injury (DAI) evoked by repetitive mTBI. Mice were subjected to mild central fluid percussion injuries at 1.4 and 1.6 atm with or without repetitive insult at a 3-hour interval and killed at 24 hours postinjury. Neocortical DAI within layer V was quantitatively assessed by double-labeling p-c-Jun and NeuN to identify both the axotomized and total neuronal population. Both confocal and electron microscopic findings revealed no apparent evidence of neuronal death. Repetitive mTBI of 1.6 atm group, but not of 1.4 atm group, demonstrated a significantly higher proportion of axotomized neurons. These results demonstrate that different intensities of mTBI induced different burdens of DAI after repetitive insult. Interestingly, the parallel loss of the righting reflex reflected differences in injury intensity, yet the duration of this reflex was not elongated by the repetitive insult. These data highlight some of the complex issues surrounding repetitive mTBI and its associated morbidity, mandating the need for continued exploration.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesão Axonal Difusa/etiologia , Neocórtex/patologia , Animais , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/etiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica , Neocórtex/metabolismo , Neocórtex/ultraestrutura , Fosfopiruvato Hidratase , Proteínas Proto-Oncogênicas c-jun/metabolismo , Reflexo de Endireitamento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...